Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

Two complexes of $CuBr₂$ with 5-tertbutylpyrazole

Xiaoming Liu, Colin A. Kilner, Mark Thornton-Pett and Malcolm A. Halcrow*

School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, England Correspondence e-mail: m.a.halcrow@chem.leeds.ac.uk

Received 14 June 2001 Accepted 25 July 2001

trans-Dibromobis(5-tert-butylpyrazole- N^2)copper(II), trans- $[CuBr₂(Hpz^{tBu})₂]$ (Hpz^{tBu} is 5-tert-butylpyrazole, C₇H₁₂N₂), exhibits a distorted square-planar geometry with a significant tetrahedral twist, while trans-dibromotetrakis(5-tert-butyl $pyrazole-N^2$)copper(II), *trans*-[CuBr₂(Hpz^{tBu})₄], adopts a distorted octahedral geometry across a crystallographic inversion centre. Both compounds exhibit intramolecular $N-H\cdots$ Br hydrogen-bonding interactions.

Comment

We have recently discovered that complexation of $CuCl₂$ or CuBr₂ by Hpz^{tBu} [Hpz^{tBu} is 3-tert-butylpyrazole] in basic MeOH leads to a novel heptacopper aggregate structure, which appears to be templated by $N-H\cdots X$ ($X^- = Cl^-, Br^-$) hydrogen-bonding interactions to non-coordinated anions (Liu et al., 2001). As a result of a more in-depth study of this system, we have isolated two more adducts of $CuBr₂$ and Hpz^{tBu}, namely *trans*-dibromobis(5-tert-butylpyrazole- N^2)copper(II), $[\text{CuBr}_2(\text{Hpz}^{\prime\text{Bu}})_2]$, (I), and *trans*-dibromotetrakis(5-tert-butylpyrazole- N^2)copper(II), [CuBr₂(Hpz^{tBu})₄], (II). The Trofimenko nomenclature for substituted pyrazoles is employed throughout this discussion (Trofimenko, 1999).

The asymmetric unit of (I) contains one molecule of the complex lying on a general position. The Cu^H centre in (I) is four-coordinate, with *trans*-disposed Br^- and Hpz^{iBu} ligands;

the latter are coordinated as the less sterically hindered 5-tertbutylpyrazole tautomer. The two $Cu-N$ bond lengths in the molecule are crystallographically identical. However, the Cu1 $-Br20$ bond is 0.0713 (6) Å longer than Cu1 $-Br21$, which presumably reflects the presence of two hydrogen bonds to Br20 (see below). Although clearly derived from a square plane, the coordination sphere at Cu1 has a significant tetrahedral twist, which can be expressed by the dihedral angle of 45.71 (6)° between the Cu1/N2/Br20 and Cu1/N11/Br21 planes. This angle would be 0° for ideal square-planar geometry and 90° for tetrahedral geometry. The N-H groups on each pyrazole ligand form an intramolecular hydrogen bond to Br20, leading to a distorted pyramidal geometry for this atom, defined by the angles $H3\cdots Br20-Cu1 = 70.0^{\circ}$, $H12\cdots Br20-Cu1 = 73.4^{\circ}$ and $H3\cdots Br20\cdots H12 = 108.2^{\circ}$.

Several 2:1 adducts of pyrazole derivatives with copper dihalides have been crystallographically characterized by other workers. Bis-pyrazole complexes of $CuF₂$ and $CuCl₂$ most commonly adopt dimeric structures in the solid state of general formula $[(CuX(\mu-X)L_2]_2]$ $(X^- = F^-$, Cl⁻; L is a pyrazole derivative; ten Hoedt et al., 1981; Reitmeijer et al., 1984; Keij et al., 1991; Małecka et al., 1998; Chandrasekhar et al., 2000). Two coordination polymers with this stoichiometry (Keij et al., 1988; Małecka et al., 1998) and a number of monomeric $[CuCl₂L₂]$ structures (Francisco *et al.*, 1980; Watson et al., 1989; Hergold-Brundic et al., 1991; Valle et al., 1995; Małecka et al., 1998) have also been reported. The only $CuBr₂$ bis-pyrazole adduct whose crystal structure has been determined previously is the mononuclear complex [CuBr₂- $(Hpz^{Ph2})₂$] $(Hpz^{Ph2}$ is 3,5-diphenylpyrazole; Murray *et al.*, 1988). Interestingly, this compound exhibits *cis*-disposed Br^{-} and Hpz^{Ph2} ligands in the solid, but otherwise adopts an almost identical coordination geometry to (I).

Compound (II) contains discrete six-coordinate Cu^{II} centres, with Cu1 lying on a crystallographic inversion centre. As for (I), the Hpz^{tBu} ligands in (II) are coordinated as the 5-tert-butylpyrazole tautomer. The four pyrazole N-donor atoms are strictly coplanar and form an almost perfect square

Figure 1

The molecular structure of (I) showing 50% probability displacement ellipsoids and the atom-numbering scheme employed. H atoms have arbitrary radii. For clarity, only one orientation of the disordered tertbutyl group $(C16A-C19A)$ is shown, while all C-bound H atoms have been omitted.

plane, although the two unique $Cu1-N$ bond lengths differ by 0.006 (2) Å, which is of borderline crystallographic significance. The axial Cu1 $-Br20$ distance of 3.02801 (16) Å is substantially longer than the sum of the covalent radii of Cu (1.38 Å) and Br (1.14 Å) (Gordon & Ford, 1972), so that this `bond' is probably better considered as a weak electrostatic interaction between the Br^- anion and the positively charged void perpendicular to the molecular tetragonal plane. This suggestion is supported by the fact that the $Cu1-Br20$ 'bond' fails the Hirschfeld rigid-bond test (Hirshfeld, 1976) by almost

Figure 2

The molecular structure of (II) showing 50% probability displacement ellipsoids and the atom-numbering scheme employed. H atoms have arbitrary radii. For clarity, all C-bound H atoms have been omitted. [Symmetry code: (i) $-x + \frac{1}{2}, -y + \frac{1}{2}, -z$.]

80 s.u.'s, which implies that there is negligible covalent interaction between these two atoms. Each Br ^{$-$} ligand accepts two hydrogen bonds from cis-disposed pyrazole ligands, forming an approximately pyramidal geometry with angles $H3\cdots Br20-Cu1 = 64.1 (5)^\circ$, $H12\cdots Br20-Cu1 = 63.0 (5)^\circ$ and H3···Br20···H12 = 76.1 (7)°. The crystal structures of two other 4:1 pyrazole $-Cu^H$ dihalide adducts have been reported previously, namely $\text{[CuCl}_2(\text{Hpz})_4\text{]}$ (Mighell *et al.*, 1975; Casellato et al., 2000) and catena- $[\{CuCl_2(\mu\text{-dpm})_2\}_n]$ [dpm is bis(pyrazol-4-yl)methane; Broomhead et al., 1998]. Both of these exhibit an essentially identical coordination geometry to (II) and show the same pattern of $N-H\cdots$ Cl intramolecular hydrogen bonding.

Experimental

For the preparation of compound (I), anhydrous CuBr₂ (0.22 g, 1.0 mmol) and Hpz^{Bu} (0.18 g, 1.5 mmol) were stirred in a 4:1 CH₂Cl₂ $$ acetone mixture (50 ml) at room temperature for 2 h. The solvent was then removed in vacuo and the residue redissolved in a minimum volume of $CH₂Cl₂$, yielding a dark-green solution and some insoluble material which was removed by filtration. Slow diffusion of pentane into the filtrate gave a brown microcrystalline product which was removed by filtration. Slow evaporation of the remaining solution yielded green crystals of (I). Analysis, found: C 35.7, H 5.1, N 12.0%; calculated for $C_{14}H_{24}Br_2CuN_4$: C 35.6, H 5.1, N 11.9%. For the preparation of compound (II), anhydrous $CuBr₂$ (0.22 g, 1.0 mmol) and Hpz^{Bu} (0.37 g, 3.0 mmol) were reacted in CH₃OH (50 ml) at room temperature for 30 min. The solvent was then removed in vacuo and the residue redissolved in a minimum volume of $CH₂Cl₂$, yielding a dark-green solution and some insoluble material which was removed by filtration. Slow diffusion of pentane into the solution gave a mixture of deep-blue well formed crystals of (II), together with a turquoise by-product which was removed manually. Analysis, found: C 46.8, H 6.7, N 15.7%; calculated for $C_{28}H_{48}Br_2CuN_8$: C 46.7, H 6.7, N 15.6%.

Mo $K\alpha$ radiation

reflections $\theta = 4.1 - 27.5^{\circ}$ μ = 5.30 mm⁻¹ $T = 150 (2) K$ Column, green $0.48 \times 0.18 \times 0.14 \text{ mm}$

 $R_{\rm int} = 0.056$ $\theta_{\rm max}=27.5^\circ$ $h = -22 \rightarrow 22$ $k = -12 \rightarrow 12$ $l = -14 \rightarrow 14$

Cell parameters from 37 366

4268 reflections with $I > 2\sigma(I)$

Compound (I)

Crystal data $[CuBr₂(C₇H₁₂N₂)₂]$ $M_r = 471.73$ Orthorhombic, Pca₂₁ $a = 17.4947$ (2) Å $b = 9.8730(1)$ Å $c = 11.1165(1)$ Å $V = 1920.10$ (3) \AA^3 $Z = 4$ $D_x = 1.632$ Mg m⁻³ Data collection Nonius KappaCCD diffractometer Area-detector scans Absorption correction: multi-scan

(SORTAV; Blessing, 1995) $T_{\text{min}} = 0.185, T_{\text{max}} = 0.524$ 37 366 measured reflections 4373 independent reflections

Refinement

Table 1

Selected geometric parameters (\mathring{A}, \degree) for (I).

Table 2

Hydrogen-bonding geometry (\AA, \degree) for (I).

Compound (II)

Crystal data

 $D_x = 1.359$ Mg m⁻³ $[CuBr₂(C₇H₁₂N₂)₄]$ $M_r = 720.10$ Mo $K\alpha$ radiation Monoclinic, C2/c Cell parameters from 29 739 $a = 19.5985(3)$ Å reflections $b = 11.9918(2)$ Å $\theta = 3.7 - 27.5^{\circ}$ μ = 2.92 mm^{-1} $c = 15.9131(2)$ Å $T = 150(2) K$ $\beta = 109.8260(6)$ $V = 3518.24(9)$ \AA^2 Rectangular prism, deep blue $Z = 4$ $0.49 \times 0.34 \times 0.17$ mm Data collection Nonius KappaCCD diffractometer 3655 reflections with $I > 2\sigma(I)$ Area-detector scans $R_{\rm int}=0.077$ Absorption correction: multi-scan $\theta_{\text{max}} = 27.5^{\circ}$ $h = -25 \rightarrow 25$ $(SORTAV; Blessing, 1995)$

 $T_{\min} = 0.329, T_{\max} = 0.637$ 29 739 measured reflections 4019 independent reflections

Refinement

 $k = -15 \rightarrow 15$

 $l = -20 \rightarrow 20$

Table 3

Selected geometric parameters (\mathring{A}, \circ) for (II).

Table 4

Hydrogen-bonding geometry (\mathring{A}, \circ) for (II).

$D - H \cdots A$	$D-H$	$H \cdot \cdot \cdot A$	$D\cdots A$	$D - H \cdots A$
$N3-H3\cdots Br20^1$ $N12 - H12 \cdots Br20$	0.86(2) 0.80(2)	2.45(2) 2.51(2)	3.2195(15) 3.2275(15)	148(2) 149(2)
$0 \t 1 \t 1 \t 1$				

Symmetry codes: (i) $\frac{1}{2} - x$, $\frac{1}{2} - y$, $-z$.

The Flack parameter (Flack, 1983) for (I) was determined using 2070 Friedel pairs. One tert-butyl group in (I) was found to be disordered during refinement. Three equally occupied disorder orientations were modelled: C16A–C19A, C16B–C19B and C16C– $C19C$. All $C-C$ bonds within the disordered group were restrained to 1.53 (2) Å, and non-bonded 1.3-C \cdots C contacts within a given disorder orientation were restrained to 2.50 (2) \AA . All wholly occupied non-H atoms were refined anisotropically. All H atoms were placed in calculated positions and refined using a riding model, with fixed C-H distances of 0.95 Å for Csp^2-H bonds and 0.98 Å for methyl C-H bonds, and an N-H distance of 0.88 Å. No disorder was detected in (II). All C-bound H atoms were placed in calculated

positions and refined using a riding model, with fixed C-H distances of 0.95 Å for Csp^2-H bonds and 0.98 Å for methyl C-H bonds. The N-bound H atoms H3 and H12 were located in a difference Fourier map and were allowed to refine freely.

For both compounds, data collection: *COLLECT* (Nonius, 1999); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEX (McArdle, 1995); software used to prepare material for publication: local program.

The authors acknowledge the Royal Society of London for a University Research Fellowship to MAH, and the EPSRC for a postdoctoral fellowship to XL and for the purchase of the diffractometer.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BM1461). Services for accessing these data are described at the back of the journal.

References

- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Broomhead, J. A., Camm, G., Sterns, M. & Webster, L. (1998). Inorg. Chim. Acta, 271, 151-159.
- Casellato, U., Ettorre, R. & Graziani, R. (2000). Z. Kristallogr. 215, 287-288. Chandrasekhar, V., Kingsley, S., Vij, A., Lam, K. C. & Rheingold, A. L. (2000).
- Inorg. Chem. 39, 3238-3242. Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Francisco, R. H. P., Lechat, J. R., Massabni, A. C., Melios, C. B. & Molina, M. (1980). J. Coord. Chem. 10, 149-153.
- Gordon, A. J. & Ford, R. A. (1972). The Chemist's Companion, A Handbook of Practical Data, Techniques and References. New York: John Wiley and S ons
- Hergold-Brundic, A., Kaitner, B., Kamenar, B., Leovac, V. M., Iveges, E. Z. & Juranic, N. (1991). Inorg. Chim. Acta, 188, 151-158.
- Hirshfeld, F. L. (1976). Acta Cryst. A32, 239-244.
- Hoedt, R. W. M. ten, Reedijk, J. & Verschoor, G. C. (1981). Recl Trav. Chim. $Pavs-Ras$ 100 400-405
- Keij, F. S., de Graaf, R. A. G., Haasnoot, J. G., Oosterling, A. J., Pedersen, E. & Reedijk, J. (1988). J. Chem. Soc. Chem. Commun. pp. 423-425.
- Keij, F. S., Haasnoot, J. G., Oosterling, A. J., Reedijk, J., O'Connor, C. J., Zhang, J. H. & Spek, A. L. (1991). Inorg. Chim. Acta, 181, 185-193.
- Liu, X.-M., McAllister, J. A., de Miranda, M. P., Whitaker, B. J., Kilner, C. A., Thornton-Pett, M. & Halcrow, M. A. (2001). Angew. Chem. Submitted.
- McArdle, P. (1995). J. Appl. Cryst. 28, 65.
- Małecka, M., Grabowski, M. J., Olszak, T. A., Kostka, K. & Strawiak, M. (1998). Acta Cryst. C54, 1770-1773.
- Mighell, A., Santoro, A., Prince, E. & Reimann, C. (1975). Acta Cryst. B31, 2479-2482.
- Murray, H. H., Raptis, R. G. & Fackler, J. P. Jr (1988). *Inorg. Chem.* 27, 26-33.
- Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter & R. M. Sweet, pp. 307-326. London: Academic Press.
- Reitmeijer, F. J., de Graaf, R. A. G. & Reedijk, J. (1984). Inorg. Chem. 23, 151-156.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Trofimenko, S. (1999). Scorpionates, the Coordination Chemistry of Pyrazolylborate Ligands. London: Imperial College Press.
- Valle, G., Ettorre, R. & Peruzzo, V. (1995). Acta Cryst, C51, 1293-1295.
- Watson, A. A., House, D. A. & Steel, P. J. (1989). Polyhedron, 8, 1345-1350.